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Characteristic-functional approach to the study of stochastic fluctuations
in a model of ionization growth in a discharge gap

Javier E. Vitela

Lorena Zogaib

(Received 29 June 1992; revised manuscript received 18 December 1992)

A characteristic-functional approach is introduced to study the space and time stochastic fluctuations
of the electron population in a simple one-dimensional model of ionization growth. Two electron
sources are considered: (a) ionization by direct collisions and (b) photoemission at the cathode due to
de-excitation of atoms. The motion of the ions is neglected and the electrons are assumed to move with
constant drift velocity. An equation for the characteristic functional
G[B(x),t}=(exp[if(l;dx O(x)n(x,t)]) is obtained, where n(x,t) is the electron density, and 6(x) is a
conjugate function; from this, equations for the moments, e.g., the average density and the density-
density correlation function, can easily be derived. Similarly to using the method of compounding mo-
ments, this technique avoids the use of a probability in function space; however, it has the benefit that
the motion in configuration space may be incorporated self-consistently, whether the motion is free
streaming or diffusion. Numerical examples are used to illustrate the time behavior of the mean total
population in the gap, which shows a good agreement with previous results; in addition, we analyze the
time evolution of the associated electron mean density, the density-density correlation function, and the

JUNE 1993

Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico 04510, Mexico, Distrito Federal, Mexico

Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico 04510, Mexico, Distrito Federal, Mexico

fluctuations around the mean population.

PACS number(s): 05.40.+j, 02.50.—r, 52.80.Dy

I. INTRODUCTION

The statistics of the evolution of the electron popula-
tion in an electric discharge between parallel electrodes
has been a subject of research that spans several decades
[1-7]. The works have dealt only with the total-electron
population; some are devoted basically to the task of
finding the probability that the discharge should have be-
come extinguished at a particular time after the release of
an initial electron at a certain position between the elec-
trodes [1,2,7]; others have been concerned with the fre-
quency spectrum of the fluctuations in the electric
current, both theoretically and experimentally, under a
variety of conditions [6]. It has long been known that
when the voltage between the electrodes exceeds a certain
value, it is possible to initiate a self-sustained gas
discharge; the threshold voltage at which this
phenomenon can occur is called the breakdown potential,
and the transition from a nonconducting to a conducting
state is called a breakdown [1]. Since most of the pro-
cesses involved in a gas discharge (e.g., ionization by col-
lision and the emission of secondary electrons at the
cathode) are random phenomena, an initial electron li-
berated in the gas by some means does not necessarily
lead to a breakdown, even though the voltage applied be-
tween the electrodes exceeds the breakdown potential.
Hence, it is natural to study the evolution of the
discharge from the point of view of the theory of stochas-
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tic processes.

In many physical situations, the approach to the study
of the stochastic behavior of populations is determined by
the homogeneity conditions prevailing in the system un-
der consideration. In a homogeneous system, for in-
stance, any fluctuation in the total population spreads
throughout the entire system before it disappears; thus, in
principle, the total population at a given time completely
determines its future evolution. On the contrary, fluctua-
tions in nonhomogeneous systems are local phenomena
which can only be described by introducing the spatial
density as a random object [8,9].

An electrical discharge does not constitute a homo-
geneous system, since the mere information of an initial
number of electrons cannot determine uniquely the prob-
ability of having a given population at a later time—that
is, the total number of electrons generated by a single ini-
tial electron is highly sensitive to its initial location inside
the gap. Thus, previous works [1-7] have been based on
heuristics derivations of evolution equations for the prob-
ability distribution of the total-electron population. In
this paper, a Markov process for the evolution of an elec-
tric discharge is constructed by accounting for the space
distribution of electrons at each time. Our aim here is to
study the space-time stochastic behavior of the electron
population between parallel plates in a simple model of
electric discharge, based on the general theory of Markov
processes.

A widely used technique to study fluctuations in
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nonhomogeneous systems is the method of compounding
moments, which avoids the use of a probability in func-
tion space [8]. It consists simply in subdividing the
configuration space into cells; calling n, the number of
particles in cell A, a master equation for
P({n,},t|{n$?}), the conditional probability for the dis-
tribution {n,} at time ¢ given a distribution {n{>} at
t=0 is constructed. From this equation, the evolution
equations for the first- and second-order moments of P
can be obtained; the resulting expressions are divided by
the width of the cells to express them as continuous func-
tions of space. In general, this is a three-step method:
first, a master equation is derived for separate unconnect-
ed cells to obtain time-evolution equations for the desired
moments, where the motion in the configuration space is
neglected; this is done by considering exclusively events
that create or annihilate a particle. The corresponding
equations for the continuum are obtained, then, by taking
the limit when the width of the cells goes to zero. The
second step also consists in constructing a master equa-
tion for the discretized system, but taking into account
only the motion of the particles from one cell to another
one, which is described through transition probabilities
per unit time; the desired moments are obtained from this
equation and expressed in continuous notation by means
of a continuous transition probability per unit time. As-
suming that the size of the jumps is small, an expansion
of this transition probability per unit time is performed to
obtain the appropriate evolution equations for the mo-
ments. Finally, in the third stage the effect of the previ-
ous steps is combined to obtain the desired equations for
the moments.

Here we approach the problem in a way similar to that
of the compounding moments method, but the master
equation is constructed including simultaneously all pro-
cesses responsible for changing the population in each
cell; the motion in the configuration space is accounted
for by prespecified transition probabilities per unit time
for jumps into neighboring cells, whether the motion is
diffusive, free streaming, or some other type. Instead of
deriving equations for the first few moments of
P({n,},t|{n'?}), we find the evolution equation for its
associated characteristic function and by taking the limit
when the number of cells goes to infinity and their width
goes to zero, an equation for the characteristic functional
is obtained. Finally, functional derivatives of the latter
yield the evolution equations for the moments in the con-
tinuous model.

The characteristic-functional technique has the advan-
tage that the motion in the configuration space, as well as
the boundary conditions when the system is finite, appear
naturally in the equations for the moments. Further-
more, in this approach the limit to the continuous model
is only performed once, when deriving the equation for
the characteristic functional, while in the method of com-
pounding moments, the continuous limit has to be taken
in each one of the derived equations for the moments.

For our purpose, we adopt a simple one-dimensional
model of an electric discharge between parallel plates,
where the gap extends from x =0 to x =L. There exists a
uniform electric field & between the electrodes and a

pressure 7 of the filling gas. It is assumed that the elec-
trons generated by the ionization processes reach equilib-
rium at the same point where they are produced. In ad-
dition to the electrons, a complete description should ac-
count for the production of ions, metastable atoms, and
radicals, as well as any possible chemical reaction be-
tween them [10-12]. To simplify the problem, we re-
strict ourselves to the electron population only and con-
sider the following two ionization processes: (i) an elec-
tron may suffer an ionizing collision, producing an addi-
tional electron at the same position, with probability per
unit time @, and (ii) an electron can also excite an atom to
emit a photon after a negligible delay, which may pro-
duce an electron emitted from the cathode, and the whole
process is taken into account by a probability per unit
time b. All electrons are assumed to move at a constant
drift velocity u, regardless of the position or any collision
they may suffer; the velocity distribution of the back-
ground particles is assumed to remain unaltered, and any
motion of ions, radicals, and metastable species is
neglected. Space-charge effects, electron-ion recombina-
tion, and electron attachment and detachment are not in-
cluded. With these assumptions, it is reasonable to con-
sider the electron-density distribution to constitute a
Markov process.

Since we are concerned here with a limited aspect of
the processes involved in an electrical discharge, the
theoretical model adopted in this work makes no attempt
to include energy- and momentum-conservation equa-
tions. However, we assume that the velocities of the elec-
trons always follow an equilibrium distribution at a con-
stant temperature k7. This assumption is expected to be
valid whenever the drift velocity p is much smaller than
the thermal speed of the electrons, so that its effect on the
velocity distribution is negligible. A constant drift veloci-
ty is achieved when the mean frictional force due to col-
lisions with the background particles compensates the ac-
celerating force of the external electric field, so that
pu~¢&. This, together with the equilibrium assumption,
leads to the condition e& /0P << 1, where o is the aver-
age cross section for momentum transfer and e is the elec-
tronic charge. Implicit in the former arguments are the
conditions that space and time scales are much larger
than the mean free path kT /0P and the mean collision
time (mkT)'/2 /o P, respectively.

The rest of the paper is organized as follows: In Sec. II
the master equation for the discretized model and the
equation for the associated characteristic function are de-
rived. Section III is concerned with the derivation of the
characteristic functional, as the limit to the continuum of
the characteristic function derived in Sec. II, and equa-
tions for the mean number density of electrons and the
density-density correlation function are found. In Sec. IV
the solution to the partial integro-differential equation for
the mean density is obtained, as well as the expression for
the mean total number of electrons within the electrodes.
In Sec. V, the solution to the equation for the density-
density correlation function is analyzed in general and
discussed in detail for a particular discharge that tends to
extinguish in time. Finally, Sec. VI contains concluding
remarks.
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II. DISCRETE MODEL: THE MASTER
EQUATION AND THE EQUATION
FOR THE CHARACTERISTIC FUNCTION

We first discretize the configuration space in a number
K of cells of width Ax =L /K and focus attention on the
distribution {n,n,,...,ng} of electrons into the cells as
a function of time (see Fig. 1). The random state vector
n={n,n,,...,ng} constitutes a Markov process,
whose statistical properties are completely described by
the conditional probability P(n,t|ny). The Markovian
property follows from the fact that the evolution in the
configuration space of a given distribution of electrons
depends only on the distribution itself and not on how it
was reached, since the medium is assumed to provide no
memory. The time evolution for the conditional proba-
bility P satisfies, then, a master equation of the form

%P(n,ﬂno): S {Q(m|n)P(m,?|ny)

—Q(n|m)P(n,t|ny)} , (1)

where Q(m|n) is the transition probability per unit time
from a distribution m to a distribution n. The solution to
this equation satisfies the initial condition

P(n,0|n0)=5 s (2)

npfyg My ngMko

as well as the normalization condition

S P(n,tIng)=1, Vr.
n

According to the model adopted here, multiplication of
electrons in the discharge is taken into account by the
probabilities a and b, as discussed in the Introduction.
The constant drift velocity p of the electrons is accounted
for by assuming that the free streaming is also a random
process, with probability per unit time p/Ax. This ex-
pression is justified by the assumption that in a given cell
there is no preferred location for an electron, so that the
probability density to have an electron in a certain posi-
tion within the cell is simply 1/Ax; hence, the probability
for an electron in a given cell to jump into the next cell
within the time interval dt becomes u dt /Ax, from which
the desired expression for the transition probability per
unit time follows [9,13].

In order to obtain the transition probability per unit

K
Q(m|n)=a 3 my(8, ,, -8 )
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FIG. 1. Diagram of the simplified one-dimensional represen-
tation of an electric discharge between parallel plates, showing
the cell partitions used for the discretized model.

time Q, the following processes are considered:

(i) Primary production. An electron in cell A
(A=1, ..., K) may suffer an ionizing collision, producing
an additional electron, with probability per unit time a,
generating a transition
fmy,....my,...,mgl—{my,...,my+1,...,mg}.

(ii) Secondary production. An electron in any cell may
suffer a collision, exciting an atom to emit a photon
which may produce a photoelectron from the cathode,
with probability per unit time b, producing a transition
fmy,....,my,...,mgl—{m;+1,...

,mk,...,mK} .

(iii) Free-streaming motion. An electron in cell A
(A=1,...,K—1) may jump into the next cell, with prob-
ability per unit time p/Ax, generating a transition

{my, ..

My My 4, . .,mK}

—{my,...,my—1m,  +1,. .. ,mg} .

(iv) Losses in the anode. An electron in cell K arrives
to the anode, where it is absorbed with a probability per
unit time p /Ax, producing a transition
{ml’ cee My, ,mK}—>{m1, ceey My, L. ,mK_1} .

Once processes (i)—(iv) are all taken into account, the
transition probability per unit time is found to be

K
+b zmj](snl,mlﬂ---s%mk)

ji=1 mjﬁmj+l j=1
K—1
+ | £ > m(d + | | mg (s SRR ) (3)
Jrong,my ng,my _ K ny,my nK,mK—l ’
Ax j=1 m;—>m; l,mj+1—>mj+l+1 Ax
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where the notation m;—m;—1 indicates replacement of
m; by m;—1 in the corresponding Kronecker’s 8, and a
similar notation is used for m; ;. Substituting this ex-
pression in Eq. (1) yields the master equation for this
model.

Among several equivalent representations of the condi-
tional probability function [8,14,15], P(n,|ny), the most
convenient for our purpose is that of the characteristic
function

con= 3 2

Ryseoo g = 0

i=1" 'P(n,t|ng) , 4)

where 0={6,,...,0¢} is the conjugate state vector,

obtained from Egs. (1), (3), and (4), is

) K
—ig C;1)= 3

a+b+-L- ]—aeiaj—beie1
= Ax

d
26, C(6;t),

— 9
Ax

(5)
with 6 . ;=0. The equations for the moments of the
conditional  probability  function, e.g., (n (1) ),
(n;(t)ny(1)), ¥j,I=1,...,K, can easily be derived from
Eq. (5) by simple derivative operations with respect to the
variables 0 i thus, for the first two moments we get

§;<n,.>=a<nj>+bs,.,1§<n,.>

with 0; a real auxiliary variable with range (— o, ).
This function contains the same information as the prob- + S (8;41,—8; Wn,) )
ability distribution, but it is easier to handle in general. r i !
The evolution equation for the characteristic function, and
J
g;(njm) a{2{n;n;)+8;,(n;)}+b15;, 2 (n;n;)+8;, 2 (n;n;)+8;,8, 2 (n;) ]
i=1 i=1 i=1
__AH;[<nlnj)—<nlnj—l>]—_A%[<nlnj>—<njn1~1)]
““f;sju(”mo)- 6,1(n ”o>+ 51(;51(1(”1()
!
+ Ax S [8m+18um+1=8)m+18,m =8, mOm 1188, 0y ) Vi I=1,...,K . (7)
m=1

Equations (6) and (7) constitute a set of K(K + 1) coupled
differential equations describing the time evolution of the
mean and the correlation function of the electron popula-
tion in the cells.

III. THE CONTINUOUS DESCRIPTION:
CHARACTERISTIC-FUNCTIONAL APPROACH

The discrete description of Sec. II provides an ade-
quate representation of the process, when the size of each
cell is so small that inside each of them the homogeneity
condition mentioned in Sec. I prevails. However, this
artificial discretization of space introduces an incon-
venient high-dimensional conjugate state vector to de-
scribe the time evolution of the characteristic function in
Eq. (5). Instead, we cast this equation in a form in which
the set of conjugate variables {6;} occurs as a continu-
ously varying function of space, by taking the limit when
the number of cells goes to infinity and their width Ax
goes to zero; in this limit, the characteristic function (4)
becomes the characteristic functional [16]

i [ Fax x")n(x'
C[O(x),t]E(e'fodxo( )n( ))

K
o (e 5

Ax—0 i=1

(x; )n(x )Ax

> , (8)

where 6, has been replaced by 0(x;) and n; by n(x;)Ax.

The time dependence of the characteristic functional is
due to the time dependence of the probability distribu-
tion, as shown in Eq. (4). Thus, taking this limit in Eq.
(5) and assuming that 6(x) is a continuous function with
a first derivative, we get the following equation for the
characteristic functional:

—I—Cet J, dx!

a(1—e'%¥)4+b(1—e')

d6 | 8C[6,t]
56(x)dx ] ©)
where

8C[0(x),7] _

80(x " )dx’ Lod Clo(x)+ed(x —x"),t]  (10)

is the functional derivative of C [17]. We shall point out

here that the term

8C

_—if(x)y____9%~
=) o dx

x=L

has been neglected in Eq. (9) for consistency with the as-
sumption that (x) is continuous and 8(L 7)=0.

Equation (9) can be cast in a form more convenient to
our purpose by integrating by parts the term containing
d6/dx, giving
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——

- (L _ ,i6(x) __,i6(0)
5, Clo.] fodx|[a(1 %) +b(1—e'%%)]

Time-evolution equations for the mean electron density
and the density-density correlation function can be ob-
tained now by using the relations

5C[6,¢]

50(x)dx =i{n(x,t)) (12)

6=0

The average {n(x,t)) provides a local description of
the mean density at each position x in the gap, at a time
t, whereas {(n(x’,t)n(x"",t)) accounts for statistical
correlations between the microscopic electron densities at
two different positions x’ and x'’, at the same time; the
study of the latter is important due to the nonhomogene-
ous character of the density fluctuations in the discharge
gap. The mean total population in the system is calculat-
ed by integrating the mean density along the gap length,
and the fluctuations around this quantity can be estimat-
ed by calculating its variance from the density-density
correlation function.

From Egs. (11) and (12) the mean electron density is
found to satisfy the partial integro-differential equation

dp(x,t) 3
ot THg PR

=ap(x,t)+b8(x)f0Ldyp(y,t)—/,LS(x)p(x,t) . (14)

where the definition

plx,t)={n(x,t)) (15)
J
aR(x,’x”,t) a ’ " a ’ "
3 +u ax,R(x , X ,t)+,u———ax,,R(x ,x'"',t)

8C[6,1]
86(x )dx
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. Jd |[8C[6,¢] . 8C[6,t]
+ 2|2l Dha :
inb(x) ax | 56(x)dx ]+t,u O(x) s0(x)dx | _,

(11

[

and

5%C[6,t]
80(x")dx'80(x"" )dx""

=—{(n(x",t)n(x",t)), (13)
6=0

respectively.

has been introduced. The left-hand side (LHS) of Eq. (14)
is the material derivative of the mean number density; on
the right-hand side (RHS), the first two terms are the
sources due to primary and secondary production, re-
spectively, and the last term represents a negative bound-
ary source whose role is to discard mathematically any
contribution to the electron population coming from the
left-hand side of the cathode, since this is physically not
possible.

According to Eq. (13), the second-order functional
derivative of Eq. (11) yields the equation for the density-
density correlation function. We shall use, instead, the
related quantity

R(x",x",t)=(n(x",t)n(x",t))—{(n(x',t)){n(x",t)) ,
(16)
i.e., the autocorrelation function of the density fluctua-

tions; this function is found to satisfy the partial integro-
differential equation

=2aR(x",x",t)+ad(x'—x")p(x’',t)+b [S(x’)foLdy R(y,x”,t)+8(x")f0LdyR(x’,y,t)

+58(x)8(x"") [ “dy ply, 1) —p[B(x")+8(x" IR (x',x"1) , (17)

where Eq. (14) has also been used. We notice here that
the last two terms in Eq. (7) do not have their equivalent
expressions in Eq. (17). These terms appear in Eq. (7) due
to the assumption that the motion from one cell to a
neighboring one is a stochastic process with a given tran-
sition probability per unit time. By assuming in the con-
tinuous model that 6(x) is continuous, we have removed
the stochasticity of the motion in the configuration space;
in fact, if exp{i(6;,,—6;)} in Eq. (5) is replaced by
1+i(0;,,—0;), this randomness is also removed from
the discrete model.

The solutions to Eq. (14) for the number density and to
Eq. (17) for the density-density correlation function are

analyzed in Secs. IV and V. As a final remark, it is worth
mentioning that the evolution equations for the moments
of higher order can also be obtained easily by taking ap-
propriate functional derivatives of Eq. (11).

IV. MEAN BEHAVIOR OF THE ELECTRON
DENSITY AND THE TOTAL NUMBER
OF ELECTRONS

In order to obtain the mean electron density p(x,?), it
is convenient to perform a Laplace transform in the time
domain of Eq. (14), that is,
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g;c—p“(x,s)-{- aﬁ(x,s)

b L, _ _
p(x,OH-;S(x)fO dy ply,s)—8(x)p(0,s) , (18)

1
“
where p(x,s) denotes the Laplace transform of p(x,?)
(18],

p(x,S)sz dt p(x,t)e ™ . (19)
The solution to Eq. (18) can be shown to be

plx,s)= p<0s)[1—9(x)] (s—a)x/u

+ ; foxdx/e —[(s—a)/,u](x—x')p(xl,o)

+£N(s)e ~ls=a)/ulxg(x) | (20)

where we have defined
- L
N(s)= dy p(y,s) , 21
(s) fo y p(y,s) (21

which is the Laplace transform of the total number of
electrons in the gap; in Eq. (20), and thereafter, we adopt
the following definition of the Heaviside step function:

0, x=<0

0x)=11, x>o0.

(22)
Since the first term on the RHS of Eq. (20) arises from a
nonphysical situation, as pointed out in the discussion of
Eq. (14), it will be omitted from now on; thus, the elec-
tron mean density throughout the interval of interest is
given by

px, s)—;N(s (s —a)/ulxg(x)

+ifxdxve—[(s—a)/,u](x x') (x ,0) . (23)
uvo
From this, the boundary condition

p0+,5)="LN(s) (24)
u
follows.
Equations (23) and (24) do not yet constitute a closed
system, since these still depend on the total number of

J

p(x,t)=p(x —put, 0)e‘”+,uN 0)e® 2

_Eeax/yfl‘dy e L—y)/n <y 0) 2
7 0

(—1)"b" Jble

)nbn
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electrons, which has not been determined so far. To
proceed further, we integrate Eq. (18) from x =0 to L and
solve for N(s), to obtain

N(s)=[N(0)—up(L,s)]/(s—a—b) . 25)

We now evaluate Eq. (23) at x =L and solve again for
N(s) to get

N(s)=%[p“(L,s)—G(L,s)]e‘s_“”‘/" , (26)
with
G(X,S)Eifoxdx’e——(s_a)(x_x’)/'up(xl’o) . 27

Eliminating, then, g(L,s) from Egs. (25) and (26), we ob-
tain

N@O)—uG(L,s)

N(s)= (28)
+ __b___.e —(s—a)L/u

(s—a—>b) P—

Finally, substitution of this latter expression in Eq. (23)
yields a closed equation for p(x,s), i.e.,

p(x,s)=G(x,s)

+£ [N(o)—ﬂG(L,s)]e—(s"a)x/‘u

(s—a—b>b) [1+———b———e'“‘“”‘/"
s—a—b

(29)

In order to obtain p(x,?), we shall perform the inverse
Laplace transform of Eq. (29); to this end, we make use of
the expansion
-1
1+ b e” (s—a)L/pn

s—a—b

< _(___Izlk’l_enaL/ue~an/,u , (30)
o (s—a—>b)"

whose validity is proved in Appendix A. Substituting Eq.

(30) in Eq. (29), finally, yields the solution to Eq. (14), val-

id in the interval (0,L), namely,

x+nl)/ult —(x +nL)/u]"0(t —(x +nL)/u)

__[x —y+(n+1)L ]/‘u)neanL/,u.e(a+b)(t—[x——y+(n+1)L]/,u)

X0(t—[x—y+(n+1)L]1/u) . (31)

The total number of electrons between the electrodes can be obtained by integrating Eq. (31) or, alternatively, by tak-
ing the inverse Laplace transform of Eq. (28). The resulting expression is

a © (_l)nbn "
(0)e® 2 '—n“—— t—

n=0

N(t)=N nL

o0 (___1
P

ebUTnL/Wg(t —nL /u)

e“’fOde p(x,0)(t —[(n+1)L —x]/p)tebt~lntDL=x1/g(t —[(n+1)L —x ]/u) . (32)



3906

The long-time limit of the electron density and the to-
tal number of electrons, if they exist, are obtained by us-
ing the following properties of the Laplace transform:

plx, @) =limspl(x,s) , Nl )=lin})s17(s) . (33)

It follows that the asymptotic value of the total number
of electrons is obtained from the limit

s N(O)_dex e‘(s—a)(L—x)/,up(x,O) ]
N(w)=1lim g

s—0

5
1+#e—(s—a)L/y

(s—a—>b) s —a—b

(34)

it is easy to verify that this limit exists only when the pa-
rameters of the system satisfy the relation

%(e“"/"—l)=1 . (35)

This latter expression will be referred to as the critical
condition, or Towsend breakdown criterion [7,10-12].
When this condition is satisfied, the asymptotic values for
the mean total number of electrons and the mean number
density become, respectively,

N( )_—_Tl___ [ de ea(L—x)/,up(x’O)__N(O)
_eaL/y__l 0
u
(36)
and
plx, oo )=£—N( w0 )e ™k . (37)

The critical condition, Eq. (35), can be interpreted as
follows: Assume that N initial electrons are liberated at
the cathode by some means, e.g., illumination of the
cathode with ultraviolet radiation; as they travel to the
anode, their average population due to primary ioniza-
tion increases as Njexp(at), which is producing secon-
dary electrons at the cathode, at an average rate
bNexp(at). Thus, when the leading electrons reach the
anode, at time ¢t =L /u, they have produced a total of
bN,[exp(aL /u)—1]/a electrons at the cathode, due to
secondary ionization. In order to satisfy steady-state
conditions, this number has to be equal to N, from
which the breakdown criterion follows. When this num-
ber exceeds N, that is, when (b/a)(e*t/*—1)>1, the
mean total electron population will increase in time; on
the other hand, if (b/a)(e®c/*—1)<1, the population
will eventually die out. We shall refer to these as super-
critical and subcritical conditions, respectively.

Equation (35) is in agreement with the breakdown cri-
teria obtained in previous works [7,10—12], where the
coefficient b/a is interpreted as the total number of
secondary electrons produced per primary electron; the
secondary production may include electrons generated by
processes such as the incidence of positive ions and meta-
stable atoms on the cathode, collisions of positive ions
with the filling gas, photoionization at the cathode, and
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(1) b=0.4
(2) b=0.31304
(3) b=0.07

FIG. 2. Time behavior of the mean total-electron population
for an initial distribution p(x,0)=N,6(x —x,), where x,=0.5.
The plots correspond to different discharges with the same pri-
mary production parameter, a=2.0. In each case, the secon-
dary electron production parameter b has been chosen to satisfy
supercritical (1), critical (2), and subcritical (3) conditions. Di-
mensionless quantities are used, as defined in the text.

photoionization of the gas itself.

To illustrate the results of this section, let us study the
evolution of a deterministic initial-electron distribution of
the form p(x,0)=Ny8(x —x,), with x,=L /2, represent-
ing N, electrons located in the middle of the discharge
gap. To simplify the notation, the dimensionless quanti-
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Py _—
-+ 10 A
\x/ /‘
Q. (5)
10° ]
(6)
16° . . .
0.00 0.25 0.50 0.75 1.00

X
FIG. 3. Normalized mean electron-density distribution cor-
responding to the subcritical discharge (a =2.0, b=0.07) of Fig.
2. The plots illustrate the mean electron distribution at several
times ¢. Dimensionless quantities are used, as defined in the
text.



47 CHARACTERISTIC-FUNCTIONAL APPROACH TO THE STUDY ...

ties ut /L —t, x /L —x, alL /u—a, and bL /u—b are in-
troduced to denote time, position, and the primary and
secondary ionization coefficients, respectively. The
space-time evolution of the electron population in the gap
is exhibited in Figs. 2 through 5. Three different types of
discharges are considered, having the same primary pa-
rameter (@ =2.0), but different secondary ionization
coefficients, describing a supercritical discharge (b =0.4),
a subcritical discharge (b=0.07), and the critical
discharge (b =0.313 04).

The plots of Fig. 2 show the time behavior of the mean
total number N(t), for the three discharges, as obtained
from Eq. (32). From these plots we can distinguish three
time regions about ¢ =0.5 and 1.0, related to the popula-
tion growth due to secondary production. For
0<t <0.5, the mean population increases monotonically
as Ngexp(a +b)t, in all cases; thus, the contribution from
the secondary ionization process to the total production
is simply given by the exponential factor exp(b?), regard-
less of the type of discharge under consideration. At time
t=0.5, the initial electrons and their direct primary des-
cendants reach the anode, giving rise to a discontinuity
AN in the total population, with

AN /N =exp[—b(1—x,)]

3.0
(1) t=0.0
2.51 (2) t=0.4 (2)
° (3) t=0.8
= 2.0
~ 3
= 15
X
s @ M
0.5 l
0.0 : L —
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X
1.5
(4) t=1.0 ©)
(5) t=2.0
o
(6) t=5.0
< ®)
1.0
Q.
(4)
0.3 T T —
0.00 0.25 0.50 0.75 1.00
X

FIG. 4. Normalized mean electron-density distribution cor-
responding to the critical discharge (@ =2.0, b=0.31304) of
Fig. 2. The plots illustrate the mean electron distribution at
several times f. As time evolves, the electron density tends
asymptotically to the stationary exponential distribution, Eq.
(37), as shown in the plot labeled (6). Dimensionless quantities
are used, as defined in the text.
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FIG. 5. Normalized mean electron-density distribution cor-
responding to the supercritical discharge (@ =2.0, b=0.4) of
Fig. 2. The plots illustrate the mean electron distribution at
several times . Dimensionless quantities are used, as defined in
the text.

for an arbitrary initial position x,. For times
0.5<t < 1.0, the population grows exponentially again,
as

NO( 1—e —b/Z)e(a +b)t

The evolution of the discharge at later times, given a
fixed value of a, will now depend strongly on the magni-
tude of the secondary electron production parameter, as
shown in the plots of this figure. To further understand
the behavior of N (2), it is necessary to consider the inter-
nal distribution of electrons in the discharge gap, as fol-
lows.

The electron-density distribution at different times is
shown in Figs. 3, 4, and 5, for the subcritical, critical, and
supercritical discharges, respectively. All cases present a
similar behavior for times 0 <t <0.5, namely, the initial 6
distribution moves uniformly towards the anode, increas-
ing its average population by a factor e, due to primary
ionization; the 8 is followed by a second front of electrons
at a distance Ax =0.5 from it, as can be seen from the
plots labeled (2) in Figs. 3 and 4. The second front is pro-
duced by the electrons that are released from the cathode
due to photoionization. At time ?=0.5, the leading §
reaches the anode originating the discontinuity in the to-
tal population shown in Fig. 2. For times 0.5<7<1.0,
no electron losses are present and the population in-
creases monotonically again; this is due to the fact that
during this time interval the second front has not reached
the anode yet, as can be seen from the plots labeled (3) in
Figs. 3 and 4. This front is composed of a main square-
like pulse, traveling uniformly towards the anode, and a
tail of electrons that extends to the cathode. At ¢t=1.0
the leading edge of the second front reaches the anode,
and the electron losses produce a discontinuity in the
growth rate of N(z), as shown in Fig. 2. After t=1.0,
there will be a distribution of electrons throughout the
entire gap length, and, therefore, losses will always be
present in the system. In particular, for times
1.0<t < 1.5, losses come from the electrons composing
the main body of the distribution that reaches the anode;
at time ¢ =1.5, all electrons composing the main body are
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finally lost, producing a local minimum in N(¢) at this
time. For times ¢ > 1.5, the electron-density distribution
becomes continuous in space, as can be seen in the plot
labeled (6) in Fig. 3, plots (5) and (6) in Fig. 4, and plots
(2)-(4) in Fig. 5. In the long-time limit the electron pop-
ulation will tend to disappear in the subcritical case [Fig.
(3)]; for the supercritical case, the population will always
increase in time [Fig. (5)]; and, finally, for the critical case
[Fig. (4)], the electron density will asymptotically tend to
the exponential distribution in Eq. (37). These results are
consistent, within the restriction of the model adopted in
this work, with those obtained from other approaches
[11].

V. ELECTRON DENSITY-DENSITY
CORRELATION FUNCTION
AND ELECTRON NUMBER VARIANCE

In this section we analyze the equation for the electron
density-density correlation function R(x’,x", 1), Eq. (17),
and obtain approximate solutions in some particular
cases. Equation (17) is a partial integro-differential equa-
tion that we shall transform into an integral equation for
R(x',x",t), which is easier to handle; to this end, we first
define the correlation between the total-electron popula-
tion and the electron density at a position x,
(8N(1)dn(x,t)), as

Fix,0)= [ "dy R(x,3,1) , (38)

which is one of the source terms in Eq. (17). Thus, a dou-
ble Laplace transform in the x' and x'’ variables in that
equation gives

9

atﬁ(k',k",z)—[2a—u(k'+k")]ﬁ(k',k",t)

=ap(k'+k",t)+bN(t)+b[F(k',t)+F(k",1)],
(39)

where the following has been defined:

Rk k0= [ "dx' [ “dxte " K HOOR(xx0)

(40)

Fik,t)= [ “dx Flx,0)e ™%, @1)
and

ﬁ(k,t)=f0wdxp(x,t)e_k" . (42)

Assuming that F(x,?) is a known function, the solution to
Eq. (39) is simply given by

ﬁ(k’,k”,t ):ﬁ(kl’ku’o)e[Za—y(k'+k")]t+e2atfotd7_e —207‘e —(k'+k")ul(t—1)

X[apk'+k",7)+bN(7)+bF(k',7)+bF(k",T)] . (43)

Finally, taking the inverse Laplace transform in k' and k'’, we get an expression for the density-density correlation

function,

R(x',x",t)=e%R (x'—pt,x" —ut,0)0(x"—pt )0(x" —put)

+8(x"—x")p(x", 1) {(e—1)O(x" —pt)+(e™ /H—1)0(t —x"" /p)}

+b fotdrez‘”N(t—7)8(x'—,u7)8(x”—,wr)+—E—ez‘”‘"/“F(x’—x",t—x”/,u)B(x’—x")@(t—x"/,u)

+ Eeza"'/"F(x"—x',t —x'/u)0(x"—x")0(t —x"/u) . (44)
u

This is not a closed equation for the density-density correlation R, since it still depends on F(x,), which is a function of
R itself. However, it can be integrated over the gap length to obtain a simpler integral equation for F(x,?), namely,

F(x,t)=e®0(L /u—1)0(x ——,ut)foL_mdy R(x,y,0)+p(x,t){(e®—1)0(x —ut)+(e**—1)0(t —x /u)}

+£e2“"/"N(t—x /)0t —x /) + —:Z—e“x/ue(x fu—n) [

+£e2“"/“6(t—x /un) !foxdy e 2W/mEp
(

PR s 2
u

dy e 2@ /vF y,t————x =Y
m

x—ut

+ [ ay F(y,t—x/,u)]. 45)
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An exact analytical solution to Eq. (45) is not possible
and we have to restrict ourselves to some particular
cases. In what follows we assume that the initial-electron
distribution is deterministic, i.e., R(x,y,0)=0, so that
F(x,0)=0.

Long-time limit
In the long-time limit, Eq. (45) reduces to

Flx)=(e™ /b~ Dpyy(x)+ L2 /iy, o
n

et [y e )+ [Py Fo |

(46)

where p; (x), and N1 denote the asymptotic density dis-
tribution and total-electron population, respectively. The
solution of this equation may or may not exist depending
on the values of the parameters a and b, as discussed
below.

In the case when the parameters of the system satisfy

the breakdown criterion, Eq. (35), the above integral

equation becomes

Fle) =7 Nyye /26— 1)

+£e2“"/ﬂ [foxdy e "2 /HE(y)+ fOL"‘dy F(y)] .

47)

This equation can be shown to have no solution, i.e.,
F(x,t)— o0 as t— o (see Appendix B). It follows, then,
that although the behavior of the ensemble averages of
the electron number density and the total number of elec-
trons tends to a finite stationary value, the fluctuations
around their mean behavior grow in time, and the proba-
bility for a given realization to have no electron popula-
tion will tend to 1 as time grows. In other words, given
an ensemble of an infinite number of macroscopically
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identical systems, the fraction of realizations with almost
no population at all will be increasing in time, while the
fraction of realizations with high population values will
be decreasing in such a way that the ensemble average
tends to a finite constant. Thus, the breakdown criterion
is meaningful only in relation to the mean electron popu-
lation, since it does not imply stationarity of the fluctua-
tions. This conclusion agrees with that of previous au-
thors, for the same conditions (2,5,7].

When the parameters of the system satisfy the inequali-
ty b(et’t—1)/a <1, it follows from Sec. IV that the
mean electron population will disappear, i.e., py(x) and
Ni1r—0. The integral equation (46) reduces then to

Fe=e= | [fay e mpp)+ [ ay iy |

(48)

whose solution is the trivial solution F(x)=0, Vx (see
Appendix B). Thus, the fluctuations of the electron pop-
ulation in the discharge will decay in time, following the
mean behavior.

Finally, when b(e® /#—1)/a > 1, both the mean elec-
tron density and total population will grow in time, and
the long-time solution of Eq. (45) will not exist; however,
since the fluctuations around these mean values are al-
ways increasing in time, it follows that the probability
that the discharge will be extinguished at a given time
will be always finite.

Time-dependent solutions

Time-dependent solutions of Eq. (45) are available by
using the method of successive approximations [19] only
in the subcritical case, where convergence of this method
can be proved (see Appendix C). By introducing the di-
mensionless smallness parameter

€=bL /u , (49)
Eq. (45) can be cast as

F(x,t)=p(x,t){(e*—1)0(x —ut)+(e™*F—1)0(t —x /p)}

+€elax/yL—1

+o|t—=

N(t—x /p)6(t —x /p)+6(x /u—1t) [

J dye 2@ F |y -

dy e 2/EF y,t————x =)
u

x—put

d . (50)

—y L—x
st
. + [ Ay Flyt—x/w)

The solution, then, can be written as a power series of the smallness parameter, as

F(x,t)= i €"F,(x,t) .

n=0

(51)

We shall point out here that the rigorous form of rearranging Eq. (50) in powers of the smallness parameter € consists in
expression the density p(x,?) and the total number of electrons N(¢) also in powers of €; however, as follows from Egs.
(31) and (32), besides being cumbersome, this procedure does not add anything but formality to our proposed solution
(51). Thus, we shall assume that p(x,?) and N(¢) are known functions of time and independent of €.

Substitution of Eq. (51) in (50) yields the following recursive set of equations for the coefficients of the different
powers of €:
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Fy(x,t)=p(x,t){(e*—

Fl(x,t)=e2""/“L_1[N(t—-x/,u)e(t—-x/,u)—l‘e X

72

+0t—2 f dye” 2"”/“F

u
and, form = 1,
F,,  (x,t)=e?>/*L 110 X fx dy e MW/EF
H x —ut
+6 t———} [ dye 2oE,
u

It is shown in Appendix C that the above expansion con-
verges when
-1/2

B

4al. (55)

el <L
2

22 4al /u
2aL L€ 1= ’

Since we cannot find F(x,?) exactly, we shall be content
to find an approximate solution up to a reasonable order
in €.

Using the recursive equations (52)-(54) for F(x,?),
several quantities of interest can be approximately com-
puted. Such is the case of the density-density correlation
at the cathode and the anode position, which has a simple
relation with F(L,?), i.e.,

R(O,L;t)=5F(L,t), (56)
as follows from Eq. (44). Also, the variance of the total-
electron population, 0%(¢)={(8N%(t)), can be obtained

EE T W ST

. (2)
(1) Standard Deviation

(2) Average Number

FIG. 6. Time behavior of the standard deviation o(¢) and the
average electron population for the subcritical discharge
(@=2.0, b=0.07) of Fig. 2. The standard deviation is obtained
from Egs. (58) and (59), keeping terms up to order €. Plot (1) is
normalized by a factor Ng !/? and plot (2) by a factor Ny !. Di-
mensionless quantities are used, as defined in the text.

1)O(x —ut)+(e™*—1)0(t —x /u)} ,

f" dy e—2ay/uF

yot—r—%
n
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(52)

] (53)

u

x—put

LT

*dy Fo(y,t—x /p)

_y

“dy F(y,t

t____

—x/u)

+foL_

} . (54)

from F(x,t), as the integral

L

o¥t)= [Tdx F(x,1) ; (57)
0

in particular, substituting Eq. (51) in the above expres-

sion, the variance is now expressed in powers of the

smallness parameter,

=3 "o (1), (58)
m=0
where
o2 ()= ["dx F,,(x,1) . (59)
0

The above results are illustrated in Figs. 6-8 for a sub-
critical discharge satisfying the convergence condition,
Eq. (55). Once more, all quantities are expressed in the
dimensionless form used earlier, and again the initial-
electron distribution is assumed to be
p(x,0)=Ny8(x —x,), with x,=0.5.

Figures 6 and 7 show the time behavior of the mean
electron population, as well as the standard deviation of
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FIG. 7. Relative width of the fluctuations for the subcritical
conditions in Fig. 6, normalized by a factor Nj !”2. Dimension-
less quantities are used, as defined in the text.
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FIG. 8. Time behavior of the density-density correlation
function at x =0.0 and x =1.0 for the subcritical conditions in
Fig. 6, as obtained from Eqgs. (51) and (56) keeping terms up to
order €. Dimensionless quantities are used, as defined in the
text.

the fluctuations computed numerically from Eq. (58) up
to order €. Although both quantities tend to vanish in
time, it can be observed in Fig. 7 that their ratio grows
without limit. In this case, since N(¢) is a non-negative
quantity, as time increases, fluctuations around the van-
ishing average { N(¢)) give rise to more and more realiza-
tions with zero population. Thus, a given discharge is ex-
pected to become extinguished within few transit times
L /u, regardless of how large the initial population N is.

Figure 8 shows the correlation of the density fluctua-
tions near the cathode and the anode, R (0, 1;7), as a func-
tion of time, calculated from Egs. (51) and (56) up to or-
der €. Since secondary production processes are always
present in the system, the density-density correlation
R(0,1;1) is expected to be zero only when there are no
electrons near the anode. As shown in the figure, this
happens for times 0<?¢ < 1.0, except at t =0.5 when the
initial 8 pulse reaches the anode [see Fig. 4]. It can be
observed that the relative maxima of R(0,1;?) appear

(1) variance
(2) correlation

(M

t

FIG. 9. Estimation of the upper bounds for the relative er-
rors introduced in the calculation of the variance ¢(¢) and the
density-density correlation function R(0,1;¢) of Figs. 6-8 as a
function of time. Dimensionless quantities are used, as defined
in the text.
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whenever there is a relative maximum in the average
electron density near the anode; this may be expected due
to the nature of the secondary ionization processes and
the fact that the density fluctuations are larger for the
larger values of the average electron density, as described
by Eq. (44).

Finally, in Fig. 9 we show an estimation of the relative
errors introduced by neglecting the term of order €* of
the expansion (51) in Eq. (56) for R(0,1;#), and the term
of order €’ in the expansion (58) for 0%(¢). The plots indi-
cate that the numerical results in Figs. 6-8 are accurate
within a 7% error for the correlation and an 11% error
for the variance.

VI. CONCLUDING REMARKS

This work illustrates the use of the characteristic func-
tional to study the space-time stochastic fluctuations in
the ionization growth in an electric discharge. Similar to
the method of compounding moments, this technique
discretizes the configuration space in cells to obtain a
master equation, from where an equation for the charac-
teristic function is obtained; taking the limit to the con-
tinuum, we derive an equation for the characteristic func-
tional. In addition to avoiding the use of a probability in
function space, this method has the advantage that the
motion in the configuration space, as well as the bound-
ary conditions when the system is finite, appear naturally
in the equations for the moments; furthermore, in this ap-
proach the limit to the continuum is only performed
when deriving the equation for the characteristic func-
tional, while in the method of compounding moments,
the limit to the continuum has to be taken in each one of
the derived equations for the moments. The equations
describing the evolution of quantities such as the average
density and the density-density correlation function are
obtained from the equation for the characteristic func-
tional simply by taking appropriate functional deriva-
tives.

The simple model considered here leads to an equation
for the electron mean density whose analytical solution
can be obtained exactly. From the analysis of this equa-
tion, the Townsend breakdown criterion is derived, and
its physical meaning explained. Numerical examples are
used here to illustrate that the electron mean density may
increase, decrease, or tend to a finite stationary distribu-
tion, when the voltage between the electrodes is, respec-
tively, above, below, or equal to the critical voltage at
which the breakdown criterion is satisfied.

From the equation for the density-density correlation
function, the fluctuations around the mean behavior of
the electron population can be studied. It is found that
the fluctuations around the mean behavior in a discharge
satisfying the breakdown criterion always increase in
time, from which it is concluded that the probability to
find a particular discharge extinguished at a given time
tends to 1, as time evolves. When the voltage between
the electrodes exceeds the threshold voltage at which the
breakdown criterion is satisfied, the fluctuations around
the growing mean also increase in time. Finally, for
discharges below the Townsend criterion, both the mean
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and the fluctuations tend to vanish asymptotically. In
some special cases of this latter situation, the method of
successive approximations is guaranteed to converge, and
it is used to obtain, by means of numerical integration,
approximate solutions for the density-density correlation
and the variance of the total number of electrons, as func-
tions of time. It is concluded that the breakdown cri-
terion is meaningful only in relation to the behavior of
the mean electron population since, due to the multiplica-
tive nature of the ionization process, fluctuations do not
reach a stationary regime; ergodic properties cannot be
used, then, to relate ensemble averages of the stochastic
fluctations to temporal averages from a single realization.

In the absence of an external source of electrons, e.g.,
illumination of the cathode by ultraviolet light, stationary
discharges are observed experimentally due, in part, to
the stabilizing effects of the external circuit coupled to
the gap; in fact, if the discharge gap is connected to a
constant supply voltage through a resistor, when the
current in the gap increases, the gap voltage decreases,
and vice versa [5]. In addition, the role of nonlinearities,
such as the effect of the space charge on the drift velocity
and the ionization parameters, cannot be neglected when
the electron population has become significant [11].

Extensions to this work, which include diffusion in ad-
dition to the constant drift, the ion population, and an
external source of electrons produced by illuminating the
cathode with ultraviolet light, are currently in progress.
It is expected that the relation between theoretical results
and experimental observations can be done more easily
for subcritical discharges in the presence of ultraviolet il-
lumination of the cathode, since in this case both the
mean populations and the fluctuations will tend asymp-
totically to stationary finite distributions.
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APPENDIX A

Here, we first determine the region of the complex
plane where expansion (30) is valid, that is, the region
where the inequality

b

e —(s—a)L/u <1
s—a—b

(A1)

is satisfied. To shorten notation, we define the real pa-
rameters

T=L/u, d=be’”, c=a-+b; (A2)
writing s =s, +is;, the above inequality becomes
de " /V (s,—c)+si<1. (A3)

The maximum value of the LHS in this inequality is
reached when s; =0; therefore, it is sufficient to ask
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de "/|s,—cl<1. (A4)

In the region s, > ¢, this inequality becomes
de _S’T<s,—c s (AS)

which is satisfied when s, > 54, where s, is the solution to

TSoT

de =sy—c . (A6)

The analysis of the validity of the expansion for s, <c is
irrelevant to our purpose. It is concluded that one of the
regions of the complex plane where the expansion (30) is
valid is the region where the real part of s is greater than
So-

In what follows, it is shown that all the singularities of
plx,s) in Eq. (29) lie to the left of 5s5. In order for the in-
verse Laplace transform [18]

L 7+i°°ds e”ﬁ(x,s)

A7
27i y—io ( )

to be valid, the existence of a finite value of y such that
all the singularities of p(x,s) lie to the left of it is neces-
sary. From Eq. (30), the singularities of p(x,s) satisfy

s—c+de °"=0, (A8)

where we have used the definitions (A2). Substituting
s=s,tis; and equating to zero the real and imaginary
parts, we get the following two coupled equations:

s,—ctde _S’Tcoss,-'r=0 (A9)
and
—Ss. T .
s;—de "'sins;7=0; (A10)
from these equations we obtain
(s, —c)+st=d% " (A11)

Solving for s; the above equation and imposing the re-
quirement that it must be real, we get

d%e s (s,—c)? . (A12)
In the region s, > ¢, Eq. (A12) becomes
de_s"r>s,—c , (A13)

from which it follows that the singularity exists in the in-
terval ¢ <s, <s,, where s, is the solution to Eq. (A6). In
the region s, <c, the singularities lie in those intervals

where the inequality de > —s, is satisfied; a detailed
analysis of these last two intervals is irrelevant to our
purpose. We conclude that the expansion in Eq. (30) is
valid and the inverse Laplace transform can be obtained
by choosing ¥ > s, in Eq. (A7).

APPENDIX B

In this appendix we use the Fredholm’s alternative to
show that there is no solution to Eq. (47) and that the
solution to Eq. (48) is the trivial solution.

To this end, we first notice that these equations can be
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written in the standard form

2/ | [ Cdy e @ (y)

+fOL~

where g(x), known as the inhomogeneous term, is equal
to (bN,, /u)e®™’#[2e**/#—1] in the case of Eq. (47) and
equal to zero in the case of Eq. (48). The Fredholm’s al-
ternative [20] is as follows: “Either the inhomogeneous
integral equation is soluble, regardless of the inhomo-
geneous term, or else the corresponding homogeneous
equation has a nontrivial solution.”

In order to use this criterion, we convert Eq. (B1) into
the following ordinary differential equation:

b
F(x)=g(x)+—e
x)=g "

*dy F(p) (B1)

2
i—F(x)—z—"iF(xH—
u?

2al /p l_la_
dx? p dx

F(x)=

(B2)
where the inhomogeneous term g(x) has not been includ-
ed. To study the existence of the solution to Eq. (47), we
substitute the stationarity condition, Eq. (35), in the
above equation to get

2
——‘“: 22 dF  a F 0, (B3)
dx u odx  g?

whose general solution is
F(x)=Ce™/"+Cyxe™+ (B4)

Substituting this expression in Eq. (B1) with g(x)=0, we
find that C, =0 and C, is undetermined, so that the gen-
eral solution to the homogeneous equation is not trivial
and it follows from the Fredholm’s alternative that Eq.
(47) has no solution.

On the other hand, for the integral equation (48) the
general solution to (B2) is

F(x)=e™/H(C e+ C,e "), (BS)
with

_ b sy 2a

—1““1—2 e ”—1"—b“ , (B6)

where it is easily proved that x?> 0 for a subcritical sys-
tem. After substituting the above expressions in Eq. (B1),
with g(x)=0, it is easily verified that the only possible
solution requires C; =0, C, =0.

APPENDIX C

Here we prove that the solution to Eq. (50) obtained by
means of successive approximations, Eq. (51), converges
whenever the parameter € is small enough. To this end,
we notice that Eq. (50) can be written as a system of cou-
pled integral equations of the form

fl(x,t)=g1(x,t)+6foLdy K (x,y,t)f1(y,t—x/p)
+6f0LdyKlz(x,y,t)fz(y,t—x/,u) (C1)

3913
and
fz(x,t)=g2(x,t)+efoLdy Ky (x,y,t)f1(y,t)
e [ Fdy Kn(x,9,00020,0) (c2)
where we have defined
f1(x,1)=F(x,t), (C3)
falx,t)=F(x,t+x/u), (C4)
g1(x,t)=p(x,t){(e*—1)0(x —put)
+(e™/*—1)0(t —x /n)}
+ee?*/PLTIN(t—x /pn)0(t —x /1) ,
(C5)
g.(x,t)=p(x,t+x /u)e™*—1)+ee?™*/FL ~IN(1) ,
(C6)
K“(x,y,t)=L_‘e2“"/“6(L —x—y)0(ut—x) , (C7)

Klz(x’y’t)___L~leZa(x—y)/,u9(x —y)
X{0(x —ut)0(y —x +ut)+0(ut—x)} ,

(C8)

K, (x,y,t)=L " le?*/r(L —x —y) , (C9)
and

Ko (x,p,t)=L 1le2¢>x"0/g(x —y) . (C10)

Since all functions defined in Egs. (C5)—-(C10) are non-
negative, then, for a fixed time ¢, we consider the follow-
ing system of coupled integral equations:

fix)=g "‘a"(x)+ef dy KT (x,y)f T (y)

+ef dy KT (x,9)f3 () (C11)
and
f3(x) m“(x)+ef dy K5 (x,9)f 1 ()
+ef dy K3 (x,y)f 5 (») (C12)
where
gr**(x), ..., K (x,y)
are chosen to satisfy
gr*(x) =g (x,t")
(C13)
K% (x,y) =Ky, (x,y,t'),
for x,y €[0,L ] and V¢'€[0,t]. Proposing that
Fixn= S efi(x,0) (C14)

n=0



3914

frx)=3 e f1"(x) (C15)
n=0

it is easily verified that f{"(x,t)<f¥"(x) and
|

le| <

provided that the integrals

S ay K, p))?
are bounded. Taking

KT (x,p)=KT™ (x,y)=L " 1e?*/kO(L —x —y)
and

rlnza)c(x’y)= rznzaX(x’y)zL—leZa(x—y)/ue(x _y) ,

2 2]
maxi=1,2[ S [fol-dx fOLdle’.IJPBX(x,y)P] H
j=1
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FM(x,t)<f3"(x). It follows then that if the expan-
sions in Eq. (C15) converge, the expansions in Eq. (C14)
also converge [21].

Successive approximations, Eq. (C15), converge uni-
formly if € satisfies the inequality [22]

) (C16)

(C17)

(C18)

(C19)

it follows that condition (C17) is satisfied; substituting (C18) and (C19) in (C16), we get that the convergence of succes-

sive approximations method is guaranteed whenever

—1/2
e

u 4aL/,u._1 —1
4aL (e )

1
<_.—
el 4aL

2

(C20)

The above condition can be satisfied only for subcritical systems, i.e., b(eF m—1)/a < 1.
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